

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title		Data Structure		Modu	le Delivery	
Module Type		Core			⊠ Theory	
Module Code		IT2 204			□ Lecture ☑ Lab □ Tutorial ☑ Practical	
ECTS Credits		6				
SWL (hr/sem)	150				🛛 Seminar	
Module Level		2	Semester o	f Delivery 4		4
Administering Department		Information Technology	College	College of computer science and information technology		ence and
Module Leader	Karar Sadiq Mohsen Al-Ghadhri e-mail		karar.sadeq@uowa.edu.iq			
Module Leader's Acad. Title		Lecturer	Module Lea	der's Qualification M.Sc.		M.Sc.
Module Tutor	Karar Sadiq Mohsen Al-Ghadhri e-mail		karar.sa	ideq@uowa.edu	.iq	
Peer Reviewer Name		Non	e-mail			
Scientific Committee Approval Date		15/06/2023	Version Nu	mber	1	

Relation with other Modules

العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	CS104	Semester	2	
Co-requisites module	Non	Semester		

Modu	Module Aims, Learning Outcomes and Indicative Contents أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية				
Module Objectives أهداف المادة الدراسية	 Understand the general principle of data structures and their usefulness Knowing the types of data structures and the main principle of each structure Knowledge of applications related to the subject and other fields of knowledge 				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Understanding Fundamental Data Structures: The course aims to provide students with a solid understanding of fundamental data structures such as arrays, linked lists, stacks, queues, trees, graphs, and hash tables. Students learn about the characteristics, operations, and implementation details of these data structures. Implementing Data Structures: The course focuses on teaching students how to implement various data structures in a programming language of their choice. This hands-on experience helps students gain practical skills in implementing and manipulating data structures course typically includes problem-solving: Data Structures course typically includes problem-solving exercises and assignments. Students are presented with real-world problems and learn how to model them using appropriate data structures. They develop problem- solving skills by designing algorithms and implementing solutions using the learned data structures. 				

	 4. Memory Management: Understanding data structures also involves understanding how memory is managed in a program. Students learn about concepts such as dynamic memory allocation, pointers, memory leaks, and memory optimization techniques to ensure efficient use of memory in data structures. 5. Algorithmic Thinking and Efficiency: The course cultivates algorithmic thinking skills in students. They learn how to break down complex problems into smaller, solvable tasks and design efficient algorithms using appropriate data structures. Emphasis is placed on optimizing algorithms for time and space efficiency.
Indicative Contents المحتويات الإرشادية	 In Data Structures, there are several key components that should be considered. While the specific contents may vary depending on the nature of the structure and the context in which it is being used, the basic contents in Data Structures are: Part A – Data structures principles 1. Introduction to Data Structures: Overview of data structures, their importance, and their role in problem-solving. Introduction to the basic terminology and concepts related to data structures (collections) [10 hrs] 2. Arrays: Study of arrays as a fundamental data structure. Understanding the concept of indexing, accessing, and manipulating array elements. Exploring multidimensional arrays and their applications. [15 hrs] Part B – Linear Structures 1. Stacks: Understanding the stack data structure and its LIFO (Last-In-First-Out) behavior. Implementing stack operations such as push popn and peek. Applications of
	 operations, such as push, pop, and peek. Applications of stacks, such as expression evaluation, function call management, and backtracking . [15 hrs] Queues: Introduction to queues and their FIFO (First-In-First-Out) behavior. Implementing queue operations, such as enqueue and dequeue. Exploring different types of queues, including circular queues and priority queues.

Applications of queues in real-world scenarios
[15 hrs]
Part C – Nonlinear Structures
1. Linked Lists: Introduction to linked lists as a dynamic data
structure. Understanding the different types of linked lists,
such as singly linked lists, doubly linked lists, and circular
linked lists. Operations on linked lists, including insertion,
deletion, traversal, and searching. [15 hrs]
2. Trees: Study of tree structures, including binary trees, binary
search trees, AVL trees, and B-trees. Understanding tree
traversal algorithms (pre-order, in-order, post-order) and
operations such as insertion, deletion, and searching in trees.
Applications of trees, such as hierarchical data representation
and sorting [15 hrs]
3. searching algorithms (e.g., binary search) [15 hrs]
4. graph algorithms (e.g., breadth-first search, depth-first search)
[15 hrs]
5. Hash Tables: Understanding the concept of hashing and hash
functions. Exploring hash table data structure and collision
resolution techniques (chaining, open addressing).
Implementing hash table operations, such as insertion,
deletion, and searching. Applications of hash tables, such as
dictionary implementations and efficient lookup. [15 hrs]
6. Recursion: Understanding the concept of recursion and its
applications in data structures and algorithms. [15 hrs]

Learning and Teaching Strategies

	استراتيجيات التعلم والتعليم
	Throughout the module, it is important to employ effective learning and teaching strategies to ensure students grasp the concepts and develop the necessary skills. The main strategy that will be adopted in delivering this module:
	Giving lectures.
Strategies	Practical Exercises within the laboratories: Provide students with opportunities to practice their skills through practical exercises.
	Conducting theoretical exams.
	Request a report from students to teach them how to do research on a specific topic.
	Request some small projects from student groups of real-world examples and case studies to demonstrate the relevance and impact of different Data structures

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا				
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	65	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5	
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	85	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	6	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل		150		

Module Evaluation تقييم المادة الدراسية					
		Time/Number	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5 and 10	
	Assignments	2	5% (5)	2 and 12	
Formative assessment	Projects / Lab.	1	10% (10)	Continuous	
	Projects / Pr.	2	5% (5)	6 and 15	
	Seminar	1	10% (10)	14	
Summative assessment	Midterm Exam	2hr	10% (10)	8	
	Final Exam	3hr	50% (50)	17	
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus) المنهاج الاسبوعي النظري		
	Material Covered	
Week 1	Introduction to Data structures	
Week 2	Arrays, structures, pointers, memory allocation	
Week 3	Stack and their basic operations.	
Week 4	Queue and their basic operations.	
Week 5	Recursion	

Week 6	Single linked list
Week 7	double linked list
Week 8	circular linked list
Week 9	circular linked list 2
Week 10	Trees, binary search trees and basic operations
Week 11	Graphs and basic algorithms on graphs: depth first and breadth first search
Week 12	Sorting Algorithms
Week 13	Searching Algorithms
Week 14	Dijkstra's algorithm.
Week 15	Priority queues
Week 16	Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus) المنهاج الاسبوعي للمختبر		
	Material Covered	
Week 1	Lab 1: Programming fundamentals overview	
Week 2	Lab 2: Arrays, structures, pointers, memory allocation	
Week 3	Lab 3: Stack and their basic operations.	
Week 4	Lab 4: Queue and their basic operations.	
Week 5	Lab 5: Recursion	
Week 6	Lab 6: Single linked list	
Week 7	Lab 7: double linked list	
Week 8	Lab 8: double linked list 2	

Week 9	Lab 9: circular linked list
Week 10	Lab 10: Trees, binary search trees and basic operations
Week 11	Lab 12: Graphs and basic algorithms on graphs: depth first and breadth first search
Week 12	Lab 14: Sorting Algorithms
Week 13	Lab 15: Searching ALgorithms
Week 14	Lab 13: Dijkstra's algorithm. Priority queues
Week 15	Project Submission

Learning and Teaching Resources مصادر التعلم والتدريس					
	Text	Available in the Library?			
Required Texts	 Clifford A. Shaffer (2009). A Practical Introduction to Data Structures and Algorithm Analysis(3rd), Prentice Hall MICHAEL MCMILLAN.(2007). DATA STRUCTURES AND ALGORITHMS USING C#. Michael McMillan 2007 Granville Barnett, and Luca Del Tongo (2008). Data Structures and Algorithms: Annotated Reference with Examples(1st) 	No			
Recommended Texts					
Websites					

Grading Scheme مخطط الدرجات						
Group	Grade	التقدير	Marks %	Definition		
Success Group (50 - 100)	A - Excellent	امتياز	90 - 100	Outstanding Performance		
	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
	C - Good	جيد	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group (0 – 49)	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.