MODULE DESCRIPTION FORM

Module Information							
Module Title	Electronic			Modu	ıle Delivery		
Module Type		Core			⊠Theory		
Module Code	BBE-211				⊠ Lecture ⊠ Lab ⊠ Tutorial ⊠ Practical □ Seminar		
ECTS Credits	7						
SWL (hr/sem)	175						
Module Level	1		Semester o	of Delivery 1		1	
Administering Department		Biomedical engineering	College	College of engineering			
Module Leader	Ali Mohammed		e-mail	Ali.mohammed@uowa.edu.iq		edu.iq	
Module Leader's Acad. Title		Assistant Teacher	Module Lea	Module Leader's Qualification Ph.D.		Ph.D.	
Module Tutor	Ali Mohammed		e-mail	E-mail			
Peer Reviewer Name		Name	e-mail E-mail				
Scientific Committee Approval Date		01/06/2023	Version Number 1.0				

Relation with other Modules					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents

Module Aims	 To develop problem solving skills and understanding of electronic circuit through the application of techniques. To understand diode circuits analysis and application. To understand clipper, clamper and zener diode circuits. This course deals with the basic concept of electronic circuits. To understand the main types of transistor and analyzing them. To perform an analysis for cascaded connection of transistor.
Module Learning Outcomes	 Recognize how electronic elements works in electronic circuits. List the various terms associated with electronic circuits. Summarize what is meant by a basic electronic circuit. Describe the different types of diode and transistor. Identify the basic electronic elements and their applications. Learn about the practical applications of diode in terms of wave cutting and wave modification. Learn about Zener diode, its properties and composition Learn about the bipolar Junction Transistor, its structure and working principle.
Indicative Contents	Indicative content includes the following. Semiconductor: N-type, P-type, P-N junction, V-I characteristics, Diode Applications, half-wave rectifier, full-wave rectifier, power supply with filters and regulators, clippers, clampers, Zener Diode: construction, characteristics and circuits, applications, Other Types of Diodes: Varactor diodes, current regulator diode, tunnel diode, schottky diode, PIN diode, Bipolar Junction Transistor(BJT): transistor structure, BJT connection configuration, biasing, characteristics, amplification parameters, D.C. load line, Q-point and waveform distortion, BJT switch operation, BJT amplifier operation, H-Parameters, equivalent circuits for C.C., C.B. and C.E. with its circuit's applications.

Learning and Teaching Strategies		
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.	

Student Workload (SWL)				
Structured SWL (h/sem)	109	Structured SWL (h/w)	7	
Unstructured SWL (h/sem)	91	Unstructured SWL (h/w)	6	
Total SWL (h/sem)	200			

Module Evaluation						
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous	All	
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	2hr	50% (50)	16	All	
Total assessment		100% (100 Marks)				

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Semiconductor: N-type, P-type, P-N junction, V-I characteristics,			
Week 2	Diode Applications, half-wave rectifier, fullwave rectifier,			
Week 3	parameters, D.C. load line, Q-point and waveform distortion			
Week 4	power supply with filters and regulators, clippers, clampers,			
Week 5	Zener Diode:construction, characteristics and circuits, applications,			
Week 6	Bipolar Junction Transistor(BJT): transistor structure,			

Week 7	Mid-term Exam
Week 8	BJT connection configuration, biasing, characteristics, amplification
Week 9	BJT switch operation,
Week 10	BJT amplifier operation,
Week 11	H-Parameters, equivalent circuits
Week 12	H-Parameters, equivalent circuits for C.C.
Week 13	H-Parameters, equivalent circuits for C.B.
Week 14	H-Parameters, equivalent circuits C.E. with its circuit's applications.
Week 15	Darlington's amplifier
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1	Lab 1: Diode characterstics				
Week 2	Lab 2: Rectifiers and filters				
Week 3	Lab 3: Clippers, clampers and voltage amplifiers				
Week 4	Lab 4: Zener diode as voltage regulator				
Week 5	Lab 5: BJT characteristics and DC Biasing				
Week 6	Lab 6: common Emitter Amplifier				
Week 7	Lab 7: common Collector Amplifier				

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	Boylestad, R.L., and Nashelsky, L., Electronic Devices and circuit Theory, 9th Ed., Pearson Education, Inc., 2013.	Yes		
Recommended Texts	Floyd, Thomas L., Electronic devices: Electron Flow Version, 11th Ed., Pearson Education, Inc., 2012.	No		

Grading Scheme					
Group	Grade	Marks (%)	Definition		
Success Group	A - Excellent	90 - 100	Outstanding Performance		
	B - Very Good	80 - 89	Above average with some errors		
	C - Good	70 - 79	Sound work with notable errors		
(50 - 100)	D - Satisfactory	60 - 69	Fair but with major shortcomings		
	E - Sufficient	50 - 59	Work meets minimum criteria		
Fail Group (0 – 49)	FX – Fail	(45-49)	More work required but credit awarded		
	F – Fail	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.